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A study of local strong uniqueness is given. Concepts of local strong uniquencss
and directional local strong uniqueness of at best, at worst, or cxact rate ¢ are
introduced. The relation of local strong uniquencss to the “conditioning™ of the
approximation problem and to the modulus of convexity of the underlying space
are noted. Special emphasis is given to L? approximation. Of particular interest
here is that a continnum of local strong uniqueness rates is possible for
L7, 1 < p<2; whereas, for 2 < p < 20, only one of two possible local strong unique-
ness rates can occur for each approximation problem. € 1989 Academic Press, Inc.

1. INTRODUCTION

The concept of strong uniqueness was first introduced by Newman and
Shapiro [11]. This quantitative estimate for uniqueness, called the strong
uniqueness theorem, was given in [11] for uniform approximation from a
Haar subspace. In the casc of real functions, for B a compact Hausdorff
space, if fe C(B)\V has v*e V as its unique best approximation from V,
then there exists 7 =7(f} > 0 such that

If=cl =zl f—e*l+7ilv—v* (N

for all ve V with | j| denoting the uniform norm on C(B). Furthermore,

since by the triangle inequality one has that | f — ol < || f — o*| + it — ¢* |

holds, it is clear that this estimate is “best possible” with respect to
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lv —v*|. For complex-valued functions the corresponding result has the
form

lo—o*I <K {Ilf —oll = If = o* 1} + KA{S =0l = I.f —v*1}, (2)

where it was noted [11] that the term with exponent 1/2 is, of course,
dominant in “all applications of interest,” and the second term is required
only to preserve the inequality when |v| is large. This inequality can be
viewed as a local strong uniqueness result since for each M > 0 there exists
y=y(M, f)>0 such that

Lf =l = lf —v*[ +7llv—0*|? (3)

holds for all ve V satisfying |[v—v*|| <M. In addition, this estimate is
known by example to be sharp. More recently, H.-P. Blatt [2] has shown
that in this setting, if B has at most » (=dim V) isolated points then the
strong uniqueness inequality (1) holds almost everywhere in C(B). Thus in
this setting, local strong uniqueness of order 2 (ie., Eq. (3)) actually can
occur although it is somewhat of an exceptional occurrence. A related open
question here is whether local strong uniqueness of order o, 1 <a <2, can
also occur for specific examples (see next section for definitions).

More recently, Y. Fletcher and J. A. Roulier [10] and D. Schmidt [12]
have shown that there exist examples of best uniform monotone
approximation problems where local strong uniqueness of order 2 (i.e., (3))
holds and is sharp. As in [2], it is also the case here that local strong
uniqueness of order 2 holding occurs as an exceptional case [5, Thm. 12].
Additional work concerning local strong uniqueness in constrained uniform
approximation can be found in [4] and in [1, 9] for the L” norms.

In what follows, a detailed study of local strong uniqueness will be given.
We shall study local strong uniqueness properties at a fixed element not in
the set of approoximants, rather than seeking one estimate for all elements
which might be approximated. We begin by giving refined definitions of
local strong uniqueness that distinguish the quantitative behaviour of
uniqueness in terms of “at best,” “at worst,” or “exact” growth estimates.
Next, a concept of directional local strong uniqueness is introduced.
Various applications of these concepts are given. Included among these is
that the modulus of convexity of the space in which we are approximating
is a lower bound on the local strong uniqueness at each point. Also, a care-
ful study of L? shows that the results in the literature to date for local
strong uniqueness are exact for p =2, but not exact for 1 < p<2. In fact,
a continuum of results is possible in this latter case. Finally, we wish to
note that local strong uniqueness estimates, when available, are a true
measure of the conditioning of the particular approximation problem
under consideration.
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2. DEFINITIONS AND MAIN CONCEPTS

Let X be a Banach space with norm || |j. Let ¥ < X be an n-dimensional
unicity subspace of X. Fix fe X and let v*e V denote the unique best
approximation to f from V. In this setting we define the following.

DerNITION 1. Let ¢e C[0, oc) satisfy ¢(0)=0, ¢(z)<t, with (1)
strictly increasing. We say that local strong uniqueness of rate atr worst 4
holds for f at v* with respect to V if corresponding to each M >0 there
exists y = (M, f) >0 such that

1f=uli Z 1 f—o* +ydllle —v*I) {4)
for all ve V satisfying |lv — v*|| < M.

DerNITION 2. With ¢ as in Definition 1, we say that local strong
uniqueness of rate at best ¢ holds for f at v* with respect to V provided
there exist {v,};, in V with v, #v* v, - 0v*, and f= f(f)> 0 such that

If—vel <= v*fi + Bpilv, —v*) ()
for all k.

DEerINITION 3. Let ¢ be as in Definition 1. We say that local strong
uniqueness of rate ¢ holds for f at v* with respect to V' provided that both
local strong uniqueness of rate at worst ¢ and of rate at best ¢ hold for f
at v* with respect to V.

Note that in this terminology whenever local strong uniqueness holds it
is necessarily sharp. This is in contrast to earlier definitions where Defini-
tion 2 was not required, but usually satisfied without additional comment.
Further, since for any veV, | f—v|| €| f—v*| + |t —v*|| by the triangie
inequality the requirement that ¢(¢) <t hold is not a true restriction on the
problem. That is, for any ¢ € C[0, 0) with ¢(0)=0, ¢ strictly increasing,
and lim, _ 4. @(¢)/t = oc, local strong uniqueness of rate ¢ cannot hold as
it would force i|v — v*|| = yé(llv — v*||) which is not possible.

If, in the above definitions, ¢(¢) =% « > 1, then one also says that local
strong uniqueness of order at worst «, order at best a, or order a, respec-
tively, holds in the three definitions. Observe that this is a slight change in
terminology from some of the earlier papers where strong uniqueness of
order r,0<r<1, was used for ¢(#)=1"" (i€, our order « is their crder
1/r).

Refining the above definitions further, one can consider directional local
strong uniqueness. This approach is useful for actual computations of the
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rate of local strong uniqueness in specific examples in that it reduces the
problem to that of a real-valued function of a single variable. Thus for
M >0 and ve V both fixed, with |»] =1 and ¢ as in the previous defini-
tions, we have the following.

DerFNITION 4. We say that local strong uniqueness of rate at worst ¢
holds for f at v* in the direction v provided there exits y=y(M, f,v)>0
such that

If = (w* +eo)ll = ILf —v*|| + vé(e) (6)

holds for all &, 0 <e < M.

DEerFINITION 5. We say that local strong uniqueness of rate at best ¢
holds for f at v* in the direction v provided that there exists g, | 0, &, #0,
and B = (M, f, v) >0 such that

ILf = (v* + e o) | < If —v*| + Bler) (7)
holds for all %.

DEerINITION 6. We say that local strong uniqueness of rate ¢ holds for
f at v* in the direction v provided both local strong uniqueness of rate at
worst ¢ and of rate at best ¢ in the direction v holds for f at v*.

ExampLE 1. In R® consider those points such that p(x, y,z)=
x*+ y*+ 2% =1. This surface induces the norm |(x, y,z)| =
inf{A: p(x/A, y/4, z/A)<1,A>0}. In the notation from above, for V=
{(x, y,2z):x=0} and f=(1,0,0) we have that v*=(0,0,0) and local
strong uniqueness of order 4 holds in the direction (0, 1, 0) while local
strong uniqueness of order 6 holds in the direction (0, 0, 1). Likewise, for
V={(x, y,z): y=0} and f= (0, 1, 0) we have that v* = (0, 0, 0) and local
strong uniqueness of order 2 holds in the direction (1, 0,0) while local
strong uniqueness order 6 holds again in the direction (0, 0, 1). Further-
more, for V={(x,y,z):y=z=0} and f=(0,1,0) we have that
v* =(0, 0, 0) and local strong uniqueness of order 2 holds for f at v* with
respect to V.

We note that this definition is an extension of the concept of order of
contact between surfaces [3]. Here the “surfaces” are the boundary of the
ball centered at f of radius || f—v*| and the subspace V. Thus, that local
strong uniqueness of rate ¢? holds in least-squares approximation is a
restatement of the fact that a true sphere and a tangent plane have order
of contact 2. Note also that the above concepts can be used to establish
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local strong uniqueness of rate ¢ for f at v*. Indeed, if a positive constant
y can be shown to exist such that y(M, £, v) =8> 0 for all ve V satislying
vl =1 then it clearly follows that local strong uniqueness of rate at worst
¢ holds for f at v*. Furthermore, if therc exists one v satisfying |vil = ! for
which local strong uniqueness of rate at best ¢ holds for / at v* in the
direction of ¢ then local strong uniqueness of rate ¢ will hoid for f at v*.
One way in which this can occur is stated in the following lemma.

LeMMma 1. Suppose that local strong uniqueness of rate at worst ¢ holds
for fat v* in each direction v,ve S= {ve V: |lv| =1}, and further that there
exists a continuous selection of the local strong uniqueness constant
(M, £, v) as a function of v. Then, local strong uniqueness of rate at worst
@ holds for f at v*.

Proof. Since S is a closed bounded subset of a finite-dimensional
subspace it is compact. Hence a continuous positive function defined on
this set must have a positive minimum. |

As in the standard theory, local strong uniqueness results give local
bounds for the best approximation opcrator. Specifically, the best
approximation operator 1, defined by letting t(f) be the unique best
approximation to ffrom ¥, is a map from X to ¥ and the local behaviour
of this operator is bounded by ¢! for any ¢ satisfying (4) for f at 7(f).
Indecd, by the usual proof [6, p. 827 one has that

() =g </ =gl = Lf =)
<hf—gl+lg—t@l =i/ =t
<hf=gl+lg=ti— 1/ —aHN<2hf - gl

for |gli<2!f}i and M =6"|f] say. In the case ¢(¢)=1> x> 1, then this is
a local Lipschitz condition of order 1/x.

Note also that if local strong uniqueness of rate ¢ holds for f at v* then
this gives one a conditioning measure of the best approximation problem
for / from V relative to the distance function. That is, if dist(f, V} <
Hf—viidist(f, V)+¢& for some vel then we must have that
v —u*|| <¢é '(¢/y). This estimate is a formal expression, for example, of
the oft discovered “ill-conditioning” of the least-squares approximation
problem. That is, for linear least-squares approximation one has that local
strong uniqueness of order 2 holds. Thus a good appm)gmation of f (say
O(¢)) need only be a fair approximation of ¢t* (say O(y/¢)).

It is known that strong uniqueness is related to the rate of convergence
of certain approximation schemes [7]. Some of these rcsults are actually
local in nature, and here it is local strong uniqueness that is important. For
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example, in the discussion of Newton’s method in Cromme [7] the local
equivalence of strong uniqueness properties of a nonlinear and a linear
map are used to ensure convergence.

That the concepts of strong uniqueness, modulus of convexity, and
modulus of smoothness are closely related in L7 spaces is well
known [14, 8]. The following shows that these concepts remain related in
a more general setting. For a Banach space X, let S={xeX:|x|=1}.
Then é(¢), the modulus of convexity of X, is defined by

S(e)=inf{l — [(x+ ¥)2l: x, y€ S, Ix — y| =¢} for 2>¢>0.

Suppose that V' is a finite-dimensional subspace of X, fe X\ V, and that v*
is the unique best approximation from ¥ to f. Furthermore, suppose that
local strong uniqueness of order ¢ in the direction v holds here. For sim-
plicity, assume that || f—v*| =1. Define y(¢)= || f — (v* + sv)|| — ||/ — v*].
Letting ¢, ] O be a sequence as in Definition 5 for ¢, we have that ¥(g,) <
Po(e, )Wk. Normalizing f — (v* + ev), one gets that (f — (v* + &v))/(1 + Y (g))
is the corresponding unit vector as || f— (v* +&v)|| = 1 + ¥(e). Now for each
&,, we have that

I/ =v*) = (f = (6* + &) )/ (1 + (&)

& — Y(ek)

T+ y(ed)

If we assume lim,_ 4 ¢(¢)/t=0, then for all k sufficiently large,
(ex — W& )/(1 + Y(e,)) = pe, where 0 < p <1 with p fixed. Thus for this p,

1
O(pe) ST =3 (f =v*) + (f = (0¥ +&0))/(1 + ¥ (el

== v*)¥les) + el /(1 + Y (e)) >

! i * > kY g g

=1 =Srrny 12U e eI v
-1_ I/ —o*) + (P (e)/2)(f = v*) — (& /2) 0]

1+ y(e)
-1_ I/ — (0* + (e, /2)v) + (Y(e)/2)( f —v*)||

1+ y(e)
<1— IS = (0* + (e/2)0)Il = (Yr(e)/2)
h L+ y(e)

_ L4+ dle/2) = (b(ed/2) . L+ (ee) + ¥(en/2) = (3/2) Yle,)

L+ y(ey) 1+ y(e,)
=(3/2)¢(f?k)_l//(8k/2)
L4+ y(e)

=1

3
<§ V(&)
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That is, for fixed p, 0 < p <1, and all k sufficiently large, 6( pe,) <3 B¢r(e,)
holds, showing that the modulus of convexity is essentially a lower bound
for the rate of local strong uniqueness at any given point. However, this is
generally a very pessimistic lower bound. Indeed, for Example 1, we saw
that various local strong uniqueness orders held in various settings with the
best being order 2 and the worst order 6. By considering the vectors
x=(n,0,¢/2) and y=(n,0, —¢/2) where n>0 is chosen so that
Ix =yl =1 (e, 1/n*+£%2%%°=1) it can easily be seen that the modulus
of convexity, 8(¢), of this space satisfies d(¢) < ke®, where k is independent
of & Thus, the direct connection between the concepts of modulus of
convexity and local strong uniqueness is rather weak. In some sense the
modulus of convexity measures the flattest spot on the unit ball for the full
unit sphere, whereas local strong uniqueness is measuring the flatness of a
restricted unit ball at a specific point.

3. LocAL STRONG UNIQUENESS IN L7

In this section we extend the results of [1] and compare these results
with some global estimates of Smarzewski [13, 14]. We begin by consider-
ing L for p > 2. Here we shall show that the local strong uniqueness results
of [1] which are ar worst estimates are also ar best estimates, showing that
their estimates are sharp. Thus, let LP=L"(S, &, u), 1 <p<cc, be the
Banach space of all u-measurable extended real-valued functions f on S
with

||fnp=<L lf(r)i"du(t))' <,

where (S, 2, u) is a finite positive measure space, and let V' be an n-dimen-
sional subspace of L”. To obtain the desired result for 2< p < oc, we use
the concept of directional local strong uniqueness.

THEOREM 1. For 2< p<o, fix fel” and M >0. Let v*eV be the
unique best L” approximation to f from V. The following hold.

(1) If for each nonzero ve V, u{supp(f — v*) " supp(v)} # 0 then local
strong uniqueness of order 2 holds for f at v*;

(i) If there exist Te V, ||8], =1, with p{supp(f —v*)nsupp(d)} =0,
then local strong uniqueness of order p holds for f at v*.

Proof. First, consider (i). From [1] we have that local strong unique-
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ness of order at worst 2 holds for f at v*, i.c., there exists y=7(f, M)>0
such that

If=vll, = 1 f —o*], +7 lo—v*[] (8)

for all ve V satisfying ||v!| , < M. This being the more difficult inequality, we
need only demonstrate that local strong uniqueness of order at best 2 holds
for f at v*. To this end fix ve V, |v]l, =1, and define F(e)= |/ —v,|,, v.=
v* +er, — M <e< M. Note that

Fi(e) = 1/p(j rf—vydu) ’ (p [ 17 =017 Z(f—ve)(—v)du>

and that
o 2
F@ == if =0 ([ 10?27 =e=v)da)

1=l (=1 f 1=l 2 da)

with F'(0)=0. Thus, F(¢) = F(0)+ 1 F”(n)¢’ for some n between 0 and &.
Since |[F"(n)| <M?(| fIl,+ M)?~* we have that

If = o ll, < ilf=v*ll, + Bllv—v*I§ 9)

holds for f=M>(||f],+ M)?~ *>>0 since |¢| = llv —v*|,.
The proof of (ii) is quite similar. First of all, the work of [ 1] shows that
for each fixed M > 0 there is a positive constant y = y(f, M) such that

If=vl,= 1 f —v*],+7]v—v*|? (19)

for all vel satisfying |v|,<M. Furthermore, setting v, =uv*+¢b
where [[5], =1 and p{supp(f —v*) N supp(é)} = 0, gives that
Fle)=(J|f—v*1?du+ [ |ed|? du)'”. For M'7P>2x>0 definc G(x)=
(J1f—v*7du+x(|6]”du)”?. Then for 0<e<M, the mean value
theorem gives that G(¢?)—G(0)=G'(n)le|” for some n,0<py<e’.
Since G'(n) = (1/p)(J |f —v*|? du+n | |17 du)'” (] 8|7 du) and |G'(n)| <
(1/p) ]if—v*”,‘,"’ [8l17, one has that local strong uniqueness of order at
best p holds for f at v* since |e| = [lv, —v*|,. |

We now consider L?, 1< p<2. Unlike the 2< p<oc case, where
precisely two local strong uniqueness orders are possible for a given
feLP\V, we find here that the local strong uniqueness result is con-
siderably more complicated. The results of [1] show that, depending on f;
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local strong uniqueness of at worst order 2 or p holds. Also, note that part
{i1) of Theorem | did not use the assumption that p > 2. Thus we have that

THEOREM 2. Let 1< p<2, fel?”\V with v* the unique best L°
approximation  from V to f. Fix M>0 and assume that
u{supp(f—v*)nsupp(v)} =0 for each ve V. Then local strong uniqueness
of order p holds for f at v*.

Proof. By [1] we have that in this case local strong uniqueness of
order at worst p holds for f at v*. By the proof of (ii) in Theorem 1 we
have that local strong uniqueness of order at best p also holds for f at

R |

If the supports of f — v* and V are not disjoint, we have that local strong
uniqueness of order r, for any re (p, 2] can hold. In this setting, it is also
possible that local strong uniqueness holds at a rate which does not
correspond to any order. The following examples illustrate this.

ExaMmpLE 2. In L[ —1,1], for a>0, let f(x)=|x|*sgn(x) and let
V={g(x) g(x)=c, ceR}. Tt is clear that ¢*=0 is the unique best L”
approximation from V to f for each p, 1 < p < oc. It is also easily seen that
le=0],=2lcl for ceV and |fl,=2/(2p+ 1N For c¢#0,
||f—c||,’,’=j'l 1 x|* sgn(x) —¢|” dx. Without loss of generality, we may
assume that ¢> 0. Then

~1

0
. i|x|°‘sgn(x)—c|"dx=[ ((—=x)*+c) dx

v .

ach ol
(¢ — x*)? dx+J (x*—c)Pdx. (i1}

Y0 ol

+

Each of these integrals may be evaluated by parts. This yields

((—x)*+c)? dx = —2 [x((“'“>+c)"|°

0

v ap+ 1 ap |

o 7
+C-[-1 ((=x)*+c)” "de.

Likewise

cla

ap  x(c—x*)*

rl.’a 3 o p _
[- (e =x*)" dx [ap+1 ap

Y0

0

ol

+c | (c—x“)”“dx]

Y
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and

1

f' (x*— )P dx=—2 ["(x“"")p

ap+1 ap

1
—cJ‘ (x*—c)r~! dx].
i

Evaluating and combining these quantities, we have that

(1+¢)”
« _ P_
I xl*sgn(x) —ellf=" =
apc  (° ayp -1
- d
P l(c+( x)%) X
(l,ix
e
ap+1Jo
(1—c)” ap

(1+c)P+(1—-c)
ap+ 1

ol

apc

i1l {(c‘+x“)”"+(c—x°‘)” dx

ape (! et i
+ap+1£,,,a{("+x) (x*—c)~'tdx.  (12)

Note that

(1+c)+(1—-c)” 2 p(p——l)c2
oap+ 1 Toap+1 ap+1

+0(c*)

for some p with ¢ < p <1, and the two integrals can be bounded as follows.
By the mean value theorem, [l.{(x*+c¢)?"'—(x*~¢)? '}dx=
[l (p—1)E27%(2c) dx for some ¢, |E,—x*<c. To obtain a lower
estimate, we replace ¢, by 2x® since p —2 <0 and x*+ ¢ <2x* on [¢"* 1]
and get that

! 1
Jlr {(X1+C)P l—(x"—c)p l}dx?ZP_l(p—l)C[ X2 =2 gy

veliz
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Depending upon ax(p—2) we have the following estimates: For
alp—2)+1<0,
rl ol 1(},_1)(6[,_1 -

o {(x"+c)f '—(x*—¢) T}dx>

Jobz a(2—p)—1 —c},

where ¢” ' 7' dominates for small ¢ since p— 1 + 1/a < 1. For an upper
estimate we have that

Jt,{(x’+c)”"‘—(x“—c)" '} dx

Il

ch.x {(x*+e) ' —(x*—c)? '} dx

o=

ol

+J ] {(x*+ )P~ —(x*~c) 'hdx
2¢h*
<(2x+ l)p -l(’,(p 1+ 1)
sl
+ | ; {(x*+ )P~ '—(x*~¢)” '}dx

< (21 + l)p lC(pO 1 1)

PP )
+2(p—l)|: :' cf  x* Mdx,

21
So that

~1
| (oY ‘=) M)dx

Vel

4p-1)2*-1)""?
(2~ p)—1

Likewise, one has (in a straightforward manner) that
ot
crmiTiag ( {(x*+¢)? '+ (x*—c)? " '}dx
Y0

$(2p l+1)(.'p l+!":’

where the estimates are independent of the size of p — 1 + 1/2. Thus when
p— 2+ 1/x<0 we have that for small ¢ there exist positive constants é and
¥ such that

640-58 3-3
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2 v |
[ ] £8P | [xl*sgn(x) — cll,

ap+1
Y
< 2 p+*,'c”“"“.
ap +1

Since { [x|*sgn(x)|,=[2/(ap + 1)]'”, it follows that local strong unique-
ness of order p + 1/x holds for |x|*sgn(x) at ¢* =0. That is, one can achieve
local strong uniqueness of orders r, re(p,2) for this L? approximation
problem.

Next consider this problem when P—2+ 1/a=0. Here once again the

dominating term for small ¢ is [ln {(x*+¢)? 7' —(x*—¢)?~'} dx and
proceeding exactly as above one obtains for 0 <¢ <1 that
27 Yp—1)c !
——(—Z—)Cln(l/c)sj {(x*+c)f ' —(x*~c)?" '} dx
ol

<2(p— NHR*-1)? ‘¢
q2xte D

In(1/c) + O(c).

Since the other estimates remain the same onc has that therc exist positive
constants o and 7 such that for small ¢,

dc? In(1/e) < || |x1* sgn(x) —cll, — || x]” sgn(x) - Oll , < y¢? In(1/c).

This shows that in this case local strong uniqueness of rate ¢, ¢(¢)=
»t2In(1/t) holds for |x|* sgn(x) at ¢* =0 with respect to L”. Similarly, for
p—2+1/x>0 it can be seen that local strong uniqueness of order 2 holds.

This example shows that local strong uniqueness in L” for 1 < p <2 is of
an entirely different character than for 2 < p < 0o where only two distinct
possibilities exist. Further, it seems likely that it should be possible to find
examples where local strong uniqueness of rate ¢, for any ¢ “between”
¢,(1)=17 and @,(t)=1> holds in L?, 1 < p<2.

As noted earlier, global strong uniqucness results were given by Smar-
zewski [137]. Specifically for p = 2, the estimate

If = ez 1f ~ 0¥ 2+22 7 llo—v*| (13)
and for [ < p <2,

If=elp = 1f = v¥ll;+ e, flo—v*||2. (14)

It should be noted that if the condition u(supp(f —v*) nsupp(v)} =0
holds, then one has

If=wil g2l f —e*ip + lo—v*|i7,
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whereas, if this condition does not hold the true local behaviour of the best
approximation problem at ¢* is lost in (13) for p > 2. This is true because
v —¢*)j, small implies that in (13)

2% ¥

— pl | £ 0% -
e N Ry T

lo—e*47+Olle = *) 2)

whereas, the correct local estimate is given by (8). Furthermore, for p =2,
one has that v* is the best approximation to ffrom V if and only if (f — v*)
is orthogonal to V. Thus by the Pythagorean theorem, one has that
If—oli3="f—v*|3+ v—rv*|3. However, for the case where 1< p<?2
and there exists v € V with u{supp(f —v*)~supp(v)} #0, one has that the
global cstimate gives a local strong uniqueness of at worst 2 estimate for
the approximation problem which may be sharp depending upon f.

A final fact that illustrates the utility of a local strong uniqueness
approach can be seen in the derivation of corresponding local Lipschitz
conditions. Thus, for example, in L? for p> 2 a local Lipschitz condition
of order 1/p for the best L” approximation operator using (13) is given in
[12, Cor. 4.2]. However, in most standard L? problems (for example f con-
tinuous and ¥ Haar) one will not have disjoint supports occurring for any
nonzero ve V, so that the true Lipschitz order of the best approximation
operator is i. For large p, this is a significant improvement.
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